科学研究
报告题目:

A derived bridge between Lie algebroids and foliations

报告人:

付佳奇 博士 (Université Paul Sabatier )

报告时间:

报告地点:

理学院东北楼四楼学术报告厅(404)

报告摘要:

Lie algebroid and algebraic foliation are two natural algebraic analogues of foliation in differential geometry, which are nevertheless not equivalent without smooth condition. In this project, we disregard this disharmony from the perspective derived algebraic geometry and ∞-categories. One possible interpretation is that a nice filtration on the dg-algebra of de Rham cohomology encodes a family of fomral deformations (along the leaves). This result should have surprising application on understanding inseparable maps in algebraic geometry.

报告人简介:付佳奇2021年毕业于js33333金沙线路检测,目前在法国Institut de Mathématiques de ToulouseUniversité Paul Sabatier攻读博士学位,他的研究方向为代数几何与代数拓扑之间的关联,特别是正特征导出几何。