We study the $L^1-L^\infty$ dispersive estimate of the inhomogeneous fourth-order
Schr\"{o}dinger operator $H=\Delta^{2}-\Delta+V(x)$ with zero energy obstructions in
$\mathbf{R}^{3}$. For the related propagator $e^{-itH}$, we prove that for $0<|t|\leq 1$, then
$e^{-itH}P_{ac}(H)$ satisfies the $|t|^{-3/4}$-dispersive estimate. For $|t|>1$, we prove that:\,\, 1) if
zero is a regular point of $H$, then $e^{-itH}P_{ac}(H)$ satisfies the $|t|^{-3/2}$- dispersive
estimate.\,\, 2) if zero is purely a resonance of $H$, there exists a time dependent operator $F_{t}$
such that $e^{-itH}P_{ac}(H)-F_{t}$ satisfies the $|t|^{-3/2}$- dispersive estimate.\,\, 3) if zero is purely
an eigenvalue or zero is both eigenvalue and resonance of $H$, then there exists a time dependent
operator $G_{t}$ such that $e^{-itH}P_{ac}(H)-G_{t}$ satisfies the $|t|^{-3/2}$-dispersive estimate.
Here $F_{t}$ and $G_{t}$ are of finite rank which satisfy $|t|^{-1/2}$-dispersive estimate.